56 research outputs found

    Infants in Control: Rapid Anticipation of Action Outcomes in a Gaze-Contingent Paradigm

    Get PDF
    Infants' poor motor abilities limit their interaction with their environment and render studying infant cognition notoriously difficult. Exceptions are eye movements, which reach high accuracy early, but generally do not allow manipulation of the physical environment. In this study, real-time eye tracking is used to put 6- and 8-month-old infants in direct control of their visual surroundings to study the fundamental problem of discovery of agency, i.e. the ability to infer that certain sensory events are caused by one's own actions. We demonstrate that infants quickly learn to perform eye movements to trigger the appearance of new stimuli and that they anticipate the consequences of their actions in as few as 3 trials. Our findings show that infants can rapidly discover new ways of controlling their environment. We suggest that gaze-contingent paradigms offer effective new ways for studying many aspects of infant learning and cognition in an interactive fashion and provide new opportunities for behavioral training and treatment in infants

    Four-Day-Old Human Neonates Look Longer at Non-Biological Motions of a Single Point-of-Light

    Get PDF
    BACKGROUND: Biological motions, that is, the movements of humans and other vertebrates, are characterized by dynamic regularities that reflect the structure and the control schemes of the musculo-skeletal system. Early studies on the development of the visual perception of biological motion showed that infants after three months of age distinguished between biological and non-biological locomotion. METHODOLOGY/PRINCIPAL FINDINGS: Using single point-light motions that varied with respect to the “two-third-power law” of motion generation and perception, we observed that four-day-old human neonates looked longer at non-biological motions than at biological motions when these were simultaneously presented in a standard preferential looking paradigm. CONCLUSION/SIGNIFICANCE: This result can be interpreted within the “violation of expectation” framework and can indicate that neonates' motion perception — like adults'—is attuned to biological kinematics

    Cues for Early Social Skills: Direct Gaze Modulates Newborns' Recognition of Talking Faces

    Get PDF
    Previous studies showed that, from birth, speech and eye gaze are two important cues in guiding early face processing and social cognition. These studies tested the role of each cue independently; however, infants normally perceive speech and eye gaze together. Using a familiarization-test procedure, we first familiarized newborn infants (n = 24) with videos of unfamiliar talking faces with either direct gaze or averted gaze. Newborns were then tested with photographs of the previously seen face and of a new one. The newborns looked longer at the face that previously talked to them, but only in the direct gaze condition. These results highlight the importance of both speech and eye gaze as socio-communicative cues by which infants identify others. They suggest that gaze and infant-directed speech, experienced together, are powerful cues for the development of early social skills

    Behavioral modeling of human choices reveals dissociable effects of physical effort and temporal delay on reward devaluation

    Get PDF
    There has been considerable interest from the fields of biology, economics, psychology, and ecology about how decision costs decrease the value of rewarding outcomes. For example, formal descriptions of how reward value changes with increasing temporal delays allow for quantifying individual decision preferences, as in animal species populating different habitats, or normal and clinical human populations. Strikingly, it remains largely unclear how humans evaluate rewards when these are tied to energetic costs, despite the surge of interest in the neural basis of effort-guided decision-making and the prevalence of disorders showing a diminished willingness to exert effort (e.g., depression). One common assumption is that effort discounts reward in a similar way to delay. Here we challenge this assumption by formally comparing competing hypotheses about effort and delay discounting. We used a design specifically optimized to compare discounting behavior for both effort and delay over a wide range of decision costs (Experiment 1). We then additionally characterized the profile of effort discounting free of model assumptions (Experiment 2). Contrary to previous reports, in both experiments effort costs devalued reward in a manner opposite to delay, with small devaluations for lower efforts, and progressively larger devaluations for higher effort-levels (concave shape). Bayesian model comparison confirmed that delay-choices were best predicted by a hyperbolic model, with the largest reward devaluations occurring at shorter delays. In contrast, an altogether different relationship was observed for effort-choices, which were best described by a model of inverse sigmoidal shape that is initially concave. Our results provide a novel characterization of human effort discounting behavior and its first dissociation from delay discounting. This enables accurate modelling of cost-benefit decisions, a prerequisite for the investigation of the neural underpinnings of effort-guided choice and for understanding the deficits in clinical disorders characterized by behavioral inactivity

    Principles of sensorimotor learning.

    Get PDF
    The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved

    Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex

    Get PDF

    Rapid Assessment of Infant Predictors of Adult IQ: Midtwin-Midparent Analyses

    No full text
    Infant predictors of adult IQ were assessed with same-sex infant twins (114 pairs) and their parents. The midtwin-midparent design permits the rapid assessment of infant measures to predict later behavior, because the midparent score serves as a proxy for the infant's potential score at maturity. At 5, 7, and 9 months, Ss were observed on the Fagan Test of Infant Intelligence, hand preference, vocalizations, selected Bayley Scales of Infant Development items, and a modified Bayley Infant Behavior Record. At 8 months, Ss received the Visual Expectation Paradigm and an auditory discrimination task. Their parents received the Wechsler Adult Intelligence Scale-Revised. Some infant measures, indicative of information processing, language ability, and temperament, predicted midparent IQ. This study extended and partially replicated findings from a previous midtwin-midparent cohort (L. F. DiLalla et al., 1990).link_to_subscribed_fulltex
    • 

    corecore